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A FRAMEWORK FOR DEVELOPING STOCHASTIC MULTI-OBJECTIVE
PAVEMENT MANAGEMENT SYSTEMS

by

John R. Mbwana, PhD*

ABSTRACT

Management of large transportation infrastructure, such as pavements, requires sound
management tools to guide activities in an optimal fashion.  Several pavement management
systems (PMS) are in use by many transportation agencies.  There are two types of
management systems.  There are those systems that are driven by optimization models and
those that rely on expert (knowledge) systems.  As transportation networks become larger
and larger, it becomes imperative that some form of optimization modeling is needed. The
majority of such optimization models are of the type where a single objective is optimized.  In
reality however, transportation officials are faced with multiple objectives or criteria that
need to be traded off each other before a final decision is reached.  In this paper, the author
proposes a framework for developing a stochastic, multi-objective PMS.  The paper discusses
the multi-objective framework and highlights the departure from its predecessor; stochastic
single-objective PMS.  The paper shows that this proposed approach would result in several
non-dominated (Pareto-optimal) policies.  These are PMS policies whose attributes make
them competitive.  The advantage of this approach is to allow decision makers to have an
important leverage in the final choice of PMS policy.  The paper also outlines added
advantages to this approach.  These include possibility of generating dual equivalence (e.g.,
distress-based and roughness-based) policies that have similar network consequences.  This
feature is shown to have potentials for developing maintenance trigger levels in both scales.
The feature could also enable agencies to develop distress-roughness equivalence tables
where equivalent distress/roughness levels that would trigger same treatment actions may be
developed.

1. INTRODUCTION

Planning and managing activities for a large network of transportation infrastructure is a
daunting task.  Many projects and interests compete for the limited resources allocated to a
transportation agency and infrastructure management is only one of such competing interests.
How much resources to allocate to transportation infrastructure and how to get the best value
for the allocated resources have received high priority by top management officials of these
agencies.  The decision makers who have to make these types of choices often do so based on
a number of criteria.  Such criteria include limited budget for capital and recurrent
expenditure, the need to keep the transportation network open at an acceptable level of
service, etc.  In this paper the author develops a framework that can be used by decision
makers to make such multi-criteria or multi-objective choices in the management of
transportation infrastructure.  Specifically, this paper focuses on the management of highway
pavements, also referred to here as Pavement Management System (PMS).  The pavement
management communities, such as the Organization for Economic Co-operation and
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Development - OECD [1], usually identify two major administrative levels of PMS namely,
network-level PMS and project-level PMS.  Analysis techniques and data requirements differ
between these two levels.

The paper first defines the two administrative levels of PMS, and then discusses existing
stochastic or probabilistic, single-objective network-level PMS models.  The author then
develops a framework for building stochastic, multi-objective network-level PMS models.
Finally, the paper discusses practical issues of applying the multi-objective framework.  This
discussion also includes practical aspects and policy implications of applying such multi-
objective decision support systems.

1.1 Network-Level PMS
Network-level1 PMS is a set of planning tools and techniques that take into consideration
pavement condition and repair work that need to be done to all highway segments being
managed by a transportation agency.  At this level the main objectives are to establish
network-level repair policies, budget requirements, repair priorities and schedules.  The
AASHTO Guidelines for Pavement Management Systems [2] identifies specific products
required to meet the objectives of a network-level PMS as:

•  Information concerning the condition or health of the pavement network.
•  Establishment of maintenance, rehabilitation and reconstruction policies.
•  Estimation of budget requirements.
•  Determination of network priorities.

The results of network-level PMS are of great interest to state-level transportation officials,
budget directors, and managers of transportation agencies.  Data requirement for network-
level PMS often includes overall indices of pavement distress, roughness, safety, or structural
adequacy.

1.2 Project-Level PMS
Project-level (also known as tactical-level) PMS determines optimal techniques for repairing
specific segments of highway pavement or projects.  This level of management involves
assessing causes of pavement deterioration, determining potential solutions, assessing
effectiveness of alternative repair techniques, and selecting solution and design parameters.
Detailed site-specific data on pavement condition, materials, etc., are required at this level of
decision-making.

In a typical “top down” PMS, network-level decision-making is done first, followed by
project-level decision-making.  In this case, the detailed project-level decision-making is
essentially guided by the network-level (long-term) strategies, observes budget restrictions
and network priorities.  In such a system, long-term network preservation and performance
take precedence over the life-cycle-cost of preserving individual projects.

2. SINGLE-OBJECTIVE VERSUS MULTI-OBJECTIVE NETWORK-LEVEL PMS

2.1 Single-Objective PMS
Optimization-based network-level PMS models try to optimize some objective while
observing a number of constraints or resource restrictions.  The models are of the form:

                                                
1 The term network-level PMS in this case includes techniques that are referred elsewhere as strategic-level as
well as program-level PMS.
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Minimize (Maximize)  Z

Subject to:
Constraint 1
Constraint 2

.

.

.
Constraint n

In this case, Z is a single objective to be optimized, such as agency-cost, user-cost, or
network condition.  The constraints often depict resource limitations of the agency, externally
determined threshold conditions of a network, etc.  Such problems are usually combinatorial
in nature since the decision variables are often discrete.  Many standard texts such as that by
Papadimitriou and Steiglitz [3] give extensive discussion of combinatorial optimization
problems. There are other forms of near-optimal techniques of optimizing combinatorial
problems, such as genetic algorithms - discussed elsewhere [4, 5], that do not necessarily
take the above form.  However, the majority of network-level optimization models are of this
type.

Single-objective optimization techniques are adequate if the decision maker is satisfied with
optimizing only one objective.  However, often there are more than one objective that need to
be optimized.  These competing multiple objectives may have significantly different impact
on the resulting solutions.  For example, an agency may wish to find suitable maintenance
strategies that minimize its own cost (agency-cost) while also minimizing the traveling
public’s or tax-payers’ cost (user-cost).  In this example, any strategy that minimizes user-
cost would require that pavements be maintained at a high level of service, which in turn will
increase agency cost significantly.  A compromise has often been to either optimize one
objective and include the competing objectives as constraints, or optimize the sum of the
competing objectives.  There are shortcomings with both of these techniques:

2.1.1 Including competing objectives in the constraints.
The technique involves optimizing one objective, say minimize user-cost, and make other
objectives as constraints, for example making the agency-cost a budget constraint. The
technique pre-supposes that one already knows the optimal or desired levels of the objectives
being put in the constraints.  Since the optimal levels of competing objectives may vary from
agency to agency, this technique may result in unsatisfactory results.

2.1.2 Adding all competing objectives into a single objective.
This technique creates a single composite objective from the set of competing objectives
(e.g., total-cost = user-cost + agency-cost). One problem with this technique is that it assumes
that all competing objectives can be expressed in a single unit.  For example, if the objectives
are agency-cost, drivers/passengers comfort, and average pavement distress level, one needs
to quantify and convert all three objectives into a single unit for this techniques to work.

Another consequence of optimizing a single composite objective (e.g., user-cost + agency-
cost) is that if there is no budget restriction, the optimal maintenance strategy requires that the
marginal user-cost equals marginal agency-cost.  This means that highly trafficked roads will
need to be maintained at higher standards than low traffic roads.  In many developed



342

communities where highway traffic volume is high, transportation agencies have criticized
this method as being too favorable to car users at the expense of non-car users (e.g., transit
users, or non-users of highway modes); both groups being taxpayers and hence also being the
payers of the agency cost.

2.2 Multi-Objective PMS
The way to tackle competing objectives optimization problems is not to pitch objectives
against each other a priori, but to develop solution strategies that include all possible
combinations of the competing objectives.  Different decision makers may then choose
differently from the set of resulting alternative solutions (maintenance strategies or policies)
based on their respective criteria.  A typical multi-objective problem setup looks as follows:

Optimize Z1, Z2, … Zm

Subject to:
Constraint 1
Constraint 2

.

.

.
Constraint n

Solution techniques involve methods of generating all possible non-dominated or Pareto-
optimal solutions to the problem.  Solution X is said to be Pareto-optimal or non-dominated
if no other feasible solution is at least as good as X with respect to every objective and strictly
better than X with respect to at least one objective.  This means a decision maker is not
entirely better off changing from one solution to the other if the two solutions are non-
dominated.  A line (or a hyper-plane) connecting all non-dominated solutions is known as the
efficient frontier.  Figure 1 shows an example of non-dominated solutions, dominated
solutions, and an efficient frontier presented in a two-dimensional objectives space. Solutions
such as S1 and S2 are non-dominated since none of them has both objectives better than those
of the other.  However, it is clear that solution S3 is dominated by (inferior to) both S1 and S2.
All Pareto-optimal solutions (all solutions on the efficient frontier) are potential alternatives
for the decision maker.  Different decision makers may choose different Pareto-optimal
solution based on their specific criteria or utility function.  Multi-objective decision analysis
and techniques of generating non-dominated (Pareto-optimal) solutions and efficient frontiers
are documented in many standard textbooks, such as that by Goicoechea at al. [6]

Objective 2

Objective 1

*

* *

Efficient Frontier

S1

S2S3
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Figure 1. Efficient Frontier (Non-dominated or Pareto-optimal Solutions):
Assuming more is better.

3. STOCHASTIC, SINGLE-OBJECTIVE NETWORK-LEVEL PMS

Single-objective stochastic decision support systems or PMSs have been developed and
discussed by many authors including Mbwana and Turnquist [7], Mbwana [8] and Kulkarni,
Golabi, and Way [9].  The theory of stochastic (Markov or semi-Markov) decision processes
is discussed in standard texts such as Derman [10].  First, let us discuss the nature of a single-
objective PMS model that uses stochastic pavement deterioration processes.  Later the author
will develop a framework for instituting a stochastic, multi-objective PMS models.

A stochastic single-objective network-level PMS model is a dynamic model where the
pavement deterioration process is stochastic (semi-Markovian) in nature.  This is a more
appealing method of modeling pavement deterioration since there are many factors, ranging
from weather condition, to traffic flow levels, to material characteristics, that make the
process of pavement deterioration probabilistic in nature.  The deterioration process is
therefore, represented by transition probabilities.  In general terms a transition probability, Pij,
represents the probability that a pavement section will deteriorate from condition (e.g.,
distress or roughness level) i to condition j in one year.  Table 1 shows an example of such
probabilities, grouped in a matrix.  The matrix in table 1 is one of the pavement distress
deterioration models that were developed for New York State highway system [11]. Based on
such a transition matrix, an average distress deterioration curve such as that shown in Figure
2 can be derived.

Table 1. One-Year Markov Transition Probability Matrix for a Flexible Pavement:
(Low trafficked asphalt concrete road after 2.5-3" overlay & preventive maintenance)

0.1421  0.6130  0.2448

0.5612  0.3825  0.0563

0.6695  0.2886  0.0418

0.7556  0.1770  0.0673

0.9146  0.0416  0.0437

0.9474  0.0332  0.0194
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Low trafficked asphalt concrete road after 2.5-3" overlay & preventive maintenance
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Figure 2: Average Performance Curve for a Flexible Pavement in New York State

Figure 3 gives a rough idea of the distress scale (pavement surface rating – PSR, ranging
from 1 to 10) used in New York State and its qualitative rating.  Historical data from this
distress scale were used to develop the stochastic deterioration model.  Detailed discussions
of how to estimate such transition probabilities from historical data are presented in Mbwana
[8] and Mbwana/Meyburg [11].
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Figure 3.  New York State Pavement Surface Distress Scale.
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The following is an example of a single-objective, network-level (or long-term) stochastic
PMS model.  This is a distress-based model that minimizes agency-cost (single-objective)
subject to a number of constraints.  In this model the pavement condition modeled by the
dynamic (time-variant) stochastic process is distress

Single-Objective, Distress-Based PMS Model

Minimize (agency cost) ∑∑∑∑
t c i a

ciatcia ACX  …………..………………1

Subject to:
Conservation of highway network size

ct,            ∀=∑∑
i a

tctcia XX          …………………..………2

Dynamic changes in pavement distress conditions (semi-Markov process)

j ,c   t,              )( ∀=∑∑∑
i a

d
tciajtcia

a
tcja PXX    ……………………..……3

Annual (long-term) total budget allocation
BACX cia

t c i a
tcia ≤∑∑∑∑    ……………………..……4

Network distress condition specifications
leunacceptab is i if             iδ≤∑∑∑

t c a
tciaX   ……………...…...………5

leunacceptab is j if             jω≥∑∑∑
t c a

tcjaX   ………………..…………6

Non-negativity
a i, c,    t,    0  ∀≥tciaX                        ……………...…...………7

where:
B = Total annual budget allocation.

tciaX = Number of lane-miles of pavement category c and traffic category t that will

be in distress level i and get repair action a.

tcX = Number of lane-miles of pavement category c carrying traffic category t.

ciaAC = Agency cost of applying repair action a on one lane-mile of pavement

category c that is in distress level i.
)(d

tciajP = Probability that a pavement of category c and traffic category t will change

from distress level i to distress level j in one year if repair action a is applied.

iδ = Maximum number of lane-miles in unacceptable distress level i.

jω = Minimum number of lane-miles of roads in acceptable distress level j.

The optimal solution tciaX  from this model will generate long-term distress-based policies

tciaD  where:

Optimal maintenance policy    100
∑

=

b
tcib

tcia
tcia X

X
D ………………...………8

This policy states that, in the long run tciaD  percent of road segments of category c, carrying

traffic level t will be in distress level i and repair action a will be applied.  Another way of
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looking at these policies is that, whenever road segments of category c, carrying traffic level t
are in distress level i apply repair action a tciaD  percent of the time.  Please note that since the

transition probabilities are modeling pavement deterioration in distress units, the resulting
policies are distress-based.  This means the optimal maintenance policies will use pavement
distress levels as trigger values for repair actions.

For the sake of comparison, let us look at a roughness-based PMS model.  The single
objective used in this case is user-cost.  Since roughness (rather than distress) is a better
determinant of user-cost, it is preferable to use pavement distress as the dynamic process that
drives the model.  Therefore, the pavement deterioration matrix, P, is in roughness scale.

Single-Objective, Roughness-Based PMS Model

Minimize  ∑∑∑∑ ∑ 





t c l a m

r
tclamtcmtcla PUCY )(  ……………......…………9

Subject to:
Conservation of highway network size

ct,           ∀=∑∑
l a

tctcla YY          …………...……………10

Dynamic changes in pavement roughness conditions (semi-Markov process)

m ,c   t,              )( ∀=∑∑∑
l a

r
tclamtcla

a
tcma PYY    ………..….……………11

Annual (long-term) total budget allocation
BACY cla

t c l a
tcla ≤∑∑∑∑    ………...………………12

Network roughness condition specifications
leunacceptab is l if             l

t c a
tclaY δ≤∑∑∑   …………...……………13

acceptable is m if             m
t c a

tcmaY ω≥∑∑∑   …………………...……14

Non-negativity
a l, c,    t,    0  ∀≥tclaY                        …………...……………15

where:
B = Total annual budget allocation.

tclaY = Number of lane-miles of pavement category c and traffic category t that are

in roughness level l and get repair action a.

tcY = Number of lane-miles of pavement category c carrying traffic category t.

claAC = Agency cost of applying repair action a on one lane-mile of pavement

category c that is in roughness level l.

tclUC = User (vehicle operating) cost per lane-mile on a pavement of category c and

roughness level l that carries traffic category t.
)(r

tclamP = Probability that a section of pavement category c and carrying traffic level t

will change from roughness level l to roughness level m in one year if repair
action a is applied.
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lδ = Maximum number of lane-miles in unacceptable roughness level l.

mω = Minimum number of roads in acceptable roughness level m.

The optimal solution tclaY  from this model will generate long-term roughness-based policies

tclaR  where:

Optimal maintenance policy    100
∑

=

b
tclb

tcla
tcla Y

Y
R ………………...………16

The roughness-based policy tclaR  has similar interpretations as the distress-based policy tciaD .

The only difference is that the former is used pavement roughness levels to trigger repair
actions while the latter used pavement distress levels to trigger actions.

As discussed earlier, if one wishes to find pavement maintenance policies that minimize both
objectives (i.e., agency-cost and user-cost) the best way would be to develop a multi-
objective model that will generate an efficient frontier of non-dominated policies.  These non-
dominated policies can then be viewed as alternative policies from which different decision
makers may choose differently, based on their respective criteria.  Later, the paper discusses a
technique by which the decision makers can rationally choose from a set of non-dominated
policies generated by the multi-objective PMS.

4. STOCHASTIC, MULTI-OBJECTIVE NETWORK-LEVEL PMS

This section presents a framework for developing a stochastic multi-objective PMS model.
To illustrate this framework, an example formulation is used in which two objectives
(agency-cost and user-cost) are to be minimized.  It is assumed (as it is indeed the case) that
pavement roughness and traffic volume will be the major determinants of user-cost while
pavement surface distress and repair type will be the determinants of agency-cost.  Since
there is no clear relationship between pavement distress and pavement roughness, the model
will include deterioration models for both conditions as two separate stochastic processes.
Even though distress and roughness will be presented as separate processes, it should be
noted that these processes are being driven by the same set of decision factors, namely the
repair actions applied.  The two objectives will be denoted as O1 (agency-cost) and O2 (user-
cost), respectively.

Network-Level Multi-Objective PMS Model
Minimize  21      , OO ………………...………17

Subject to:
Objective number 1:  agency cost (a function of pavement distress & repair action)

∑∑∑∑=
t c i a

ciatcia ACXO1 ……………...…………18

Objective number 2:  user cost (a function of pavement roughness & traffic volume)

∑∑∑∑ ∑ 



=

t c l a m

r
tclamtcmtcla PUCYO )(

2 ………...………………19

Conservation of highway network size
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ct,             ∀=∑∑
i a

tctcia XX          …………...……………20

Conservation of highway network size (link distress and roughness variables)
ct,          ∀=∑∑

l a
tctcla XY          ……………...…………21

Dynamic changes in pavement distress conditions (semi-Markov process)

j ,c   t,              )( ∀=∑∑∑
i a

d
tciajtcia

a
tcja PXX    …………...……………22

Dynamic changes in pavement roughness conditions (semi-Markov process)

m ,c   t,              )( ∀=∑∑∑
l a

r
tclamtcla

a
tcma PYY    ……………...…………23

Annual (long-term) total budget allocation
BACX cia

t c i a
tcia ≤∑∑∑∑    …………...……………24

Network distress condition specifications (optional)
leunacceptab is i if             iδ≤∑∑∑

t c a
tciaX   ………………...………25

leunacceptab is j if             jω≥∑∑∑
t c a

tcjaX   ………...………………26

Network roughness condition specifications (optional)
acceptable is l if             l

t c a
tclaY δ≤∑∑∑   …………………...……27

acceptable is m if             m
t c a

tcmaY ω≥∑∑∑   ………………...………28

Non-negativity
a i, c,    t,    0  ∀≥tciaX                        ……………………...…29

a l, c,    t,    0  ∀≥tclaY                        …………………...……30

where:

tciaX = Number of lane-miles of pavement category c and traffic category t that are

in distress level i and get repair action a.

tclaY = Number of lane-miles of pavement category c and traffic category t that are

in roughness level l and get repair action a.

tcX = Number of lane-miles of pavement category c carrying traffic category t.

ciaAC = Agency cost of applying treatment a on one lane-mile of pavement category c

that is in distress level i.

tclUC = User (vehicle operating) cost per lane-mile on a pavement of category c and

roughness level l that is carrying traffic category t that is in.
)(d

tciajP = Probability that a pavement of category c and traffic category t will change

from distress level i to distress level j in one year if repair action a is applied.
)(r

tclamP = Probability that a section of pavement category c and traffic level t will

change from roughness level l to roughness level m in one year if repair
action a is applied.

iδ = Maximum number of lane-miles in unacceptable distress level i.

jω = Minimum number of roads in acceptable distress level j.
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lδ = Maximum number of lane-miles in unacceptable roughness level l.

mω = Minimum number of roads in acceptable roughness level m.

Given the above multi-objective network-level PMS model one can generate a number of
non-dominated (Pareto-optimal) solutions that form the efficient frontier.  Techniques such as
the weighting method or the constraint method, which are outlined in several multi-objective
analysis texts, like that by Goicoechea et al. [6], can be used to accomplish this task.  The
main focus of this paper however, is not to discuss the generation of the efficient frontier, but
rather to explore the implications of:

•  a dual policy (distress-based, tciaD , and roughness-based, tclaR ) existence

for each non-dominated solution to the above problem, and
•  rational choice by decision makers from various non-dominated policies

resulting from the non-dominated solutions generated by the above PMS
model.

To illustrate these two points, Figure 4 shows a typical set of non-dominated solutions and an
efficient frontier that may be generated by the above PMS model.  The figure shows four
non-dominated solutions, S1, S2, S3, S4 that cover the entire range of objectives O1 (agency-
cost) and O2 (user-cost).  Any point along the efficient frontier can be a potential non-
dominated solution.  Solution S1, for instance, is synonymous to an aggressive pavement
repair policy that maintains pavement surfaces to a high quality (hence low user-cost) but
requires a lot of agency resources (hence high agency-cost). Solution S4, on the other hand,
represents a scenario where the agency simply does the minimum of repair (resulting in low
agency-cost, maybe due to severe budget constraints) resulting in poor state of pavement
condition that leads to high user-cost.  Solutions S3 and S2 would generate policies that result
in less and less user-cost but at increasing rate of agency-cost, respectively.  This is a typical
situation facing a decision maker in a multi-objective PMS framework.  Before discussing
how to choose rationally from a set of non-dominated solutions, let us first discuss the
implications of a dual-policy existence for each given non-dominated solution.

Agency-cost, O1

S1

S2

S3

S4

Efficient Frontier
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Figure 4.  An Illustrative Example of an Efficient Frontier and Four Non-Dominated
Solutions

4.1 Existence of Dual-Policies
For each non-dominated solution from the PMS model, there will be a set values of tciaX  and

tclaY .  These values can be used to generate either a distress-based repair policy, as shown in

Equation 8 and repeated below,

i.e., 100
∑

=

b
tcib

tcia
tcia X

X
D

or a roughness-based repair policy as shown in Equation 16 and repeated below.

 i.e., 100
∑

=

b
tclb

tcla
tcla Y

Y
R

Each one of these policies can be used to guide network-level programming of pavement
maintenance activities.  One advantage of having such dual policies is that they gives analysts
and decision makers the flexibility of developing either distress-based or roughness-based
pavement repair trigger values.  Therefore, for agencies that consider minimization of user
cost as an important objective, roughness-based policies would be more appropriate to use.
The reason for this is that such policies are likely to portray greater sensitivity to those factors
that contribute to user-cost.  For example, solution S1 in Figure 4 will generate roughness-
based policies, tclaR , that would be sensitive to traffic volume and would recommend

aggressive repair work on high traffic volume roads in order to minimize roughness, and less
aggressive repair work on low volume roads.  This policy sensitivity may not be as apparent
on distress-based policy, tciaD , even though both policies, if applied, will achieve the same

network level goal.  It is anticipated that, as more research data is gathered on this approach,
it will be apparent that some non-dominated solutions will favor the use of one policy type
than the other.  For example, if a decision maker chooses a solution closer to S1 then it is
likely that roughness-based policies will be more favorable and more intuitive than distress-
based policies.  On the other hand the closer to S4 the decision maker’s choice is, the more
intuitive the distress-based policies will be.

Dual policies that have similar consequences create an added advantage in this case.  The
related policies can be helpful in developing distress-roughness correspondence table.
Several researchers have tried to develop meaningful relationships between distress and
roughness measures of pavement quality without much success.  This method has a chance of
enabling agencies to develop distress-roughness correspondence matrices.  The
correspondence matrix will not necessarily lead to closed form relationships.  However, it
will have information regarding which distress level would trigger the same response as a
given roughness level.  An important aspect of this observation that is currently being
researched is whether the distress-roughness correspondence tables will differ depending on
the chosen alternative along the efficient frontier.

The last advantage of these dual policies is that transportation agencies will be able to
establish optimal network conditions and priorities for different parts of the network in both
roughness terms as well as distress terms.
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The main disadvantage of this method is that it is data intensive.  It requires deterioration
models (transition probabilities) to be developed for both distress and roughness measures of
pavement quality.  It is recommended that the application of this method be a long-term goal
of transportation agencies.  With time, such agencies would be able to accumulate historical
data on distress and roughness from which models can be built.

4.2 Choosing Between Several Non-Dominated Policies (Analytic Hierarchy Process-
AHP)

When one has to select an alternative from a set of several non-dominated alternatives based
on multiple objectives or criteria, it is often hard to make such choice rationally.  For
example, if one has to choose a job from say, three offers, there may be several criteria to
consider such as starting salary, distance of work site from family, benefit packages attached
to each offer, etc.  While one offer may have attractive starting salary, it may have less
attractive benefit package compared to another offer.

This example is similar to a situation presented in Figure 4.  In this example, four (or even
more) non-dominated solutions (each of which will result to a different repair policy) that
were generated by the multi-objective PMS, are shown on the figure.  A decision maker
needs to choose between these alternatives policies based on a number of criteria such as
user-cost, agency-cost and their resulting impacts on network conditions.  The author
recommends the use of standard multi-criteria ranking techniques to enable the decision
maker to choose from a set of non-dominated solutions.  Thomas Saaty’s Analytic Hierarchy
Process – AHP [12] provides a powerful tool for this purpose.  The technique involves
conducting pair-wise comparisons of alternatives as well as objectives or criteria in order to
determine decision maker’s priorities.  The result of this process is a rational ranking of
alternatives in the order their respective utilities to the decision maker.  This process has been
used successfully in many situations involving multi-criteria decision-making.

5. CONCLUSIONS AND RECOMMENDATIONS

The multi-objective PMS framework presented in this paper is intended to enhance existing
single-objective systems.  The framework ties standard engineering management techniques
to highway pavement management and demonstrates the advantages of applying a multi-
objective analysis to PMS.  The main advantage of a multi-objective PMS is that it allows
decision makers in transportation agencies to have control in the policies being generated by
PMS models.  Specifically, it allows these officials to have an input on the weights attached
to various criteria used to generate management policies.

As a bonus to the benefits of a multi-objective approach to PMS, the paper also shows that
there could be added benefits to this approach.  An example was presented where it was
shown that multi-objective PMS could generate dual policies that have similar network
consequences.  For example, it is possible to have distress-based maintenance policies with
corresponding roughness-based policies.  If implemented successfully, this feature has the
ability do specify simultaneous maintenance trigger values in both distress and roughness
scales.  This type of result could also be used to create distress-roughness correspondence
tables where equivalent distress scales that would trigger similar actions as a given roughness
scale may be specified.  The distress-roughness equivalence scale would vary from agency to
agency depending on the distress measures used.  Assuming that the International Roughness
Index (IRI) is used as a standard measure of roughness, this method could also be used to
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compare distress scales of various agencies.  The implications of dual (or multiple) policies
generated by this technique could be an interesting area for further research work.
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